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RANDOM VARIATE GENERATION: A SURVEY'

Bruce W. Schmeiser
School of Industrial Enginearing
Purdue University
\lest Lafayette, IN 47907

ABSTRACT: The state of the art of generating random va-iates on a digftal
computer 1s surveyed. General concepts are presented, followed by criteria

for comparing algorithms. The literature is surveyed for coentinuous univariate,
discrete univariate, continuous multivariate, and discrete multivariate distribu-
tions, as well as for point processes, time series, order statistics and
geometrically inspired problems. An extensive Tist of references is provided,

1. INTRODUCTION

Assuming the existence of a source of findependent 4(0, 1) observations uy, u,, ..., we survey the state
of the art of transforming the uniform random numbers to obtain random variates x,, x,, ... satisfying
specified properties of distribution and/or dependency structure, for use as inputs t6 stochastic
simulation experiments on digital computers.

We assume the U(0, 1) random variables are ideal; that is, they are exactly uniformly distributed over
the interval (C, 1) and they are Tndependent. The consequences of this assumption not being entirely
true are discussed in Surford and Willis (1978), Chay, Fardo and Mazumdar (1975), Golder and Settle
(1976), Monahan (1973) and ‘leave (1973}. Kennedy and fentle {1980) provide an excellent and up-to-date
discussion of U(0, 1) generation.

Note that it is possible, although very uncommon, to use distributions other than ¥(0,1) 2s the basic
source of randomness. Liinow (1974), for example, discusses using truely random Poisson observations.

We discuss general underlying concepts in Saction 2 and criteria for comparing variate generation
algorithms in Section 3. Section 4, which surveys the state of the art of specific problems, considers
both continuous and discrete random variables and random vectors, as well as processes correlated and
changing over time, order statistics, and geometrically inspired problems such as generation of noints
unfformly distributed on the surface of a sphere and random permutations.

For completeness there are a few references listed at the end of the paper which are not discussed.
2. FUNDAMENTAL CONCEPTS

It s important to distinguish between the fundamental approaches for random varifate generation and the
resulting alqorithms. While occasionally an efficient alaorithm results. from the direct application of
a single concept, more often an algorithm is a combination of more than one concept. As in other fields,
such as mathematical programming, the same concepts applied in much the same way can still lead to dif-
ferent algorithms due to channes in data structure and tailoring to specific computer efficiencies.

We discuss four fundamental concepts: (1) inverse transformation, (2) compesition, (3) acceptance/
rejection, and (4) special properties. Unlike the algorithms discussed in Section 4, these concepts
have changed only 1ittle since variate generation was first studied. Butler (1956), for example,
discussas these concepts. Kennedy and Gentle (1980) discuss both basic concepts and algorithms and
provide an extensive recent bibliography. Other gereral references include Ahrens and Dieter (1974b),

—
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Chambers (1970), Dedk and Bene (1979), Fishman (1973, 1978b), Galliher (1959), Handbook of Mathematical
Functions (1964), Hammersley and Handscomb (1964), Halton (1970), Jansson (1966), Kahn (1964), Knuth
1969), Knuth and Yao (1976), P.A.W. Lewis (1972, 1979), P.A.W, Lewis and Learmonth (1973), T.G. Lewis
1975), McGrath and Irving (1973), Newman and Odell (1971), Sowey (1972, 1978), Spanier and Gebhard
1969), Teichrow (1953, 1965), and Tocher {1963).

2.1 The Inverse Transformation

£
The use of the inverse nf the cumulative distribution function (cdf) leads to the most fundamental f
method for generating random variates. It is applicable to any univariate distribution, whether ¥
discrete, continuous, or mixed. The method,is to convert the U(0,1) random number u to the value x

lying at the u th fract.le; that is, x = F~'(u), which {s analogous to a percentile test score of u

.{or 100u) with a corresponding raw score of x.

first consider an arbit-ary discrete distribution with cdf F(x). The probability of observing x, is
F(xi*‘) - F(xi) and any method of assigning this probability to xi-is a valid method. However, the

most straightforward pracedure is to return Xy if and only if F(xi) <u< F(xi+]). Some care must be

taken on the end points to be sure all values are defined and to avoid round-off error, but otherwise
implementation is direct: (1) Generate u ~ U(0,1) and set i=0, (2) set i=i+l, (3) if u > Fi» g0 to 2,

(4) otherwise return X=vy. Here two vectors are needed: Fi to store the value of F(xi) and vy to store
the value of Xis i=1, 2, ..., n. For many discrete distributions, the explicit use of Fi can be avoided
since a recursive relationship can be used to calculate Fi from F1_1. (For example, see the discussion

of the Poisson, binomial, and negative binomial distributions below, as well as the geometric distribu-
tion which has a closed form inverse transformation.) Likewise, the vector v can be made implicit when
simple relationships exist between v; and i, such as vi=i or vi=i-1. _Chen and Asau (1978) suggest the

use of index tables to speed the search for the proper interval.

A similar concept applies to continuous distributions, where now we want P(a < x < b) = F(b) - F(a) for
all values of a and b. This property is satisfied when x= F-1(u) is used, since the distribution of
the random variable Y=F(X) is U(0, 1) for any continuous random variable X. The continuous version can
also be obtained by considering the limiting case of the discrete concept as the intervals g~ Xy
become shorter. .

For some distributions the inveise transformation leads to closed form algorithms which may be implemen-
ted directly. Examples are x = a + (b-a)u for X ~ U(a, b) and x = -(In{1-u)/a)**(1/y) for the Weibull
distribution with shape parameter y and scale parameter a. Note that y=1 yields the exponential
distribution with mean 1/a.

Numerical methods may be used when the inverse transformation is not closed form. Butler (1970)
discusses a general, although approximate, method for generating random variates from any continuous
distribution via numerical integration of the density function. {See corrections by Proll (1972).)
Numerical methods for the normal, gamma, and beta distributions are referenced in Section 4. When

the distribution is in the form of a histogram (a mixture of uniform distributions), Barnard and Cawdery
(1974) suggest using an approximate but fast algorithm based on approximating the distribution with
equally likely uniform distributions and linear interpolation.

In both the discrete and continuous cases, there are several reasons for using the inverse transformation
even if slow numerical techniques are involved: (1) Order statistics can be ?asily generated, as dis-~
cussed in Secti?n 4, (2) truncated distributions may be generated using x=F-1(u') where u'=a+{b-a)u,
resutting in F-1(a) < x < F-1(b), (3) the use of variance reduction techniques is aided, as discussed in
Section 3.

2.2 Composition

Composition, or probability mixing, is often used without realizing the generality of the method. For
example, the double exponential (LaPlace) distribution is commonly generated by obtaining a negative
exponential random variate and assigning a random sign. Another example is mixed distributions, such as
rainfall in a particular week, where zero rainfall may occur with probability p, and the amount of
rainfall, conditional on there being some, may follow a gamma distribution. Thé algorithm is to set x=0
if u < p_ and to generate a gamma variate x otherwise, However, composition is useful in many situations
where thé concept is not so intuitively applied.

composition, like the inverse transformation, has both a discrete and continuous fdrm. However, the type
of composition is independent of the type of random variable; discrete random variables can be mixed
’ continuously and vice versa. We first consider discrete mixing.

Let f(x) denote the density function 1f X is & continuous random variable or the probability of observing

e
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x if X 1s discrete. Then discrete composition is applicable when f(x) fs written as

n
f(x) -fgl P; fi(x)

where £ Py = 1 and n nay be infinite. The generation of random variates from f(x) simply requires
generating a variate x from ff(x) with probability Py- The salection of 1 is usually via the discrete
inverse transformation and the generation from fi(x) may use any algorithm. In the double exponential
example, f1(x) = A exp(-Ax) I(x)(o.m) and fz(x) A exp(Ax) I(x)( ,0)" where I(x)( )-l ifa<x<b
and zero otherwise, and p, = p, = .5. In the rainfall example, py = Ppr Pp=1- Py t (x) = I(x)[o 0)
and f (x) is the gamma density function.

Note that the linear combination of random variables X = 2 a Xi is a convolution and the proper

generation procedure is to generate each of the n random vlrintes x; and to combine them as indicated
in the linear combination. Do not confuse convolution and corposition.

Discrete conpositionhas an intuitive geometric interpretation in terms of the density function f(x),
in that the area under the density may be partitioned in any way to form the n subdensities fi(x)
In the case of the double exponential, the partition between che two subdensities is vertical.
horizontal partition may be used to partition a trapezoidal shaped density function into a un1form
(rectangular) subdensity and a triangular subdensity. The arwa of each subdensity f (x) is p;.

Many of the fastest algorithms for univariate continuous distributions use discrete compos1tion See
Marsaglia (1961c) who discusses the concept and applies lt to the normal distribution. Other
applications are discussed in Section 4.

One of the most important advances in the generation of discrete random variables is due to Walker
(1974a, 1974b, and 1977), who describes the concept of "aliasing" for distributions having a finite
number of possible values. Walker noted that any discrete distribution having a finite number of

outcomes can be expressed as a mixture of n distributions each having exactly two outcomes and each
having coefficient Py = 1/n. This yields the very fast discrete composition algorithm (1) Generate

urv U0, 1), setu=un, set i = INT(u) +1, set u=1 -y, (2) ifucx Fi' return x = 1, (3) otherwise

return x = A,, where it is assumed that x = 1, 2, ..., n are the poscible values of x. Here i has a
discrete uniform distribution over the range 1, 2, ..., n; F1 is the probability that x=1 and I-F1 is

the probability that the alias value x=A. is returned. Kronmal and Peterson (1979) discuss the calcu-
latfon of F, and A; for i=1, 2, ..., n and also prove that the method is applicable for all distributions
with range 'x = 1,2, ..., n. Of course the use of an additional vector analagous 1o v in the discrete
inverse transformation allows generation from any discrete distribution with a finite number of outcomes.

Tabling discrete values, which results in very fast algorithms at the expense of rounding the probab-
{lities and/or using large tables, is a composition method. Marsaglia (1963) discusses an ingenious
modification to reduce the table size See also Norman and Cannon (1972).

The continuous composition algorithm can be used when f(x) is expressed as f(x) = ! fxly(x) dF (y).

where Y is a continuous random variable mixing conditional density functions or discrete mass functions
(x). Vvariate generation proceeds in two steps: (1) Generate a continuous random variate y having

cdf Fv(y) and (2) generate a random variate x from f, y(x). Distributions which can be handled in this

way are called compound distributions. Examples include the beta-binomial, where the probability of
success p in the binomial distribution is a random variable with a beta d1stribut10n Less intuitive is
that a Pearson type IV distribution can be generated as a gamma(n, 1/8) with 8 being a gamma(8, y) random
variate, where gamma(a, b) denotes the gamma distribution with shape parameter a, scale parameter b, and
mean ab. Another example is the negative binomial discussed below. For other examplas of compound
distributions, see Johnson and Kotz (1969).

Note that since a xz random variable is the square of a standaEdized normal random variable, it is not
unreasonable to consider generating a norma} variate using a y© variate. The problem arises when it is
noted that either of the two roots of the y° variate corresponds to normal variates. Due to symmetry, it
seems reasonable to use each root with probability .5, which is correct. Michael, Schucany and Haas
'(1976) derive the correct multinomial probabilities for selecting one of multiple roots, leading to a
simple composition algorithm for the inverse Gaussian distribution, as an example.

(3

e



2.3 Acceptance/Rejection

The acceptance/rejection concept is to generate variates from one distribution and discard (reject)

some of them in such a way that the remaining variates have the desired distribution. Although unt{)

the last few years the acceptance/rejection concept has been used almost exclusively with univariate

:?nti?:ous distributions, it is valid for either discrete or continuous and univariate or multivariate
stributions. ’

Let f(x) denote the density function of X if X is a continuous random variable or the mass function *f

X is a discrete random variable. Here X may be either univariate or multivariate. Let t(x) be any
majorizing function of f(x); that is, we require that t{x) > f(x) for all values of x. fLet g{x) = t(x)/c
denote the density function proportional to t(x) if X is continuous (in which case ¢ = t{x) dx) or

the mass function proportional to t(x) if X is discrete (in which case ¢ = D t(x)). The algorithm is

(1) generate x ~ g(x), (2) generate u ~ U(0, 1), (3) if u > f(x)/t(x), then go to step 1, (&) otherwise
return x.

The algorithm's execution time depends on three factors: (1) The time to generate x in step 1, (2) the
time to perfarm the comparison in step 3, and (3) the expected number of interations, ¢, to return x.

The selection of the majorizing function t(x) plays a major role in all three factors, making it crucial
to the development of efficient algorithms. In elementary textbook discussions of the acceptance/
rejection algorithm, t(x) = max_ f(x) is usually used, as originally discussed by von Neumann (1951).
Step 1 is then to generate a unfform variate over the range of X,which is fast, but the expected numter
of iterations, ¢, is often unacceptably large, such as for the beta distribution over the interval ((, 1)
as the shape parameters p and/or q become large, as discussed in detail in Section 4. Many recent
algorithms use acceptance/rejection.

The basic concept can be made more efficient by adding some logic between steps 2 and 3. Since step 3
often requires slow exponential type operations, preliminary comparisons using simple one-sided
approximations to f(x)/t{x) can speed up an algorithm by accepting or rejecting x before f(x)/t(x) is
calculated. This modification has been termed the "squeeze" method by Marsaglia (1978). Marsaglia
{1970) discusses one-sided approximations.

It is also common to apply two “tricks" to step 3. First, f(x) is rescaled to avoid having to calculate

normalizing constants which tend to involve hard to compute constants such as gamma and beta functions.
Since the shape of the density function does not depend on these normalizing constants, other constants
can be substituted. Setting the normalizing constant to 1 sometimes causes numerical problems, however.
Ahrens and Dieter (1974) rescale the gamma distribution so thatmax f(x) = 1, thereby avoiding the gamma
function as well as numerical problems. The second “trick" is to fompare 1n(u) to ln(f(x)/t?x)) in

step 3, since this also helps to avoid numerical problems, often eliminates some exponential calculations,
and special methods exist to generate In(u) directly (as the negative of an exponential random variate).

Schmeiser and Lal (1980), Schmeiser and Babu (1980) and Tadikamalla (1978), for example, use acceptance/

rejection to generate variates from subdensities in composition algorithms. Kronmal and Peterson (1979b,

1979¢) and Kronmal, Peterson and Lundberg (1978) combine the concepts of acceptance/rejection, aliasing,

and discrete composition. Jeswani and Sikdar (1978) appear to have recently rediscovered the acceptance/
rejection concept.

2.4 Special Properties

Sometimes the distribution from which random variates are to be generated has one or more spectial
properties which can be used, leading to methods of generation which are specific to that distribution.
Three topics are discussed in this section: transformations from nonunifotm distributions, generation of
trigonometric functions with random arguments, and von Neumann's comparison method.

Transformations from nonuniform distributions
Many of the classical methods for generating random variates from common distributions are based on
generating some intermediate nonuniform random varfates Yys Ypu =00 ¥y and then calculating the

desired variate as x = f(yl, Yps «ees yn). For n = 1, examples are nonstandard normal via x = u + o2,

where z s a standard norma) variate; U(a, b) via x = a + (b-a)u; and lognormal variates via x = exp(y),
where y is the appropriate normal variate., There are many examples for n > 1. These include Erlang as
the sum of k exponential variates (x=- In(ll u,)), beta as a ratio of ganmas, Student's t via standardized
normal and chi-square, F via chi-squares, chi-squares via normals, binomial as a sum of Bernoulli trials,
negative binomial as a sum of geometric random variates, and on and on. Many of these are excellent
approaches. One very.comnon example that is not good, because it is a rather crude approximation, {is

the approximation of the normal distribution by the sum of twelve uniform variates, x = u +uq4---+u]2-6.
The kurtosis is 2.9 rather than 3 and the tails are truncated at + 6. If a very simple glnefation
algorithm is needed, such as when using a hand calculator, an easTer and more accurate approximation is

4)




x = (0135 - (1-u)'13%)/.1975, as discussed in Schmeiser (1980).

An important special case of transformations from intermediate random variates is the ratio-of-uniforms
method of Kinderman and Monahan (1976, 1977). They suggest defining a region R so that conditional on

¥ = (v;, v,) being uniformly distributed over R, then x = v,/v, is a random variate from the distribution
of intlres . While any method may be used to generate v, ¢ nly two dimensional acceptance/rejection
is used, where f(v) = l/fR dv I(v, (R) and t(v) = I/JR dv 1(1)(5). where S is the smallest rectangle

e?cl?sing R. A well-known particular example is the generation of Cauchy variates where R is the unit
circle.

Trigonometric functions with uniformly distributed arguments
Sﬁﬁg standard "tricki." are available for generating random values of trigonometric functions having

uniformly distributed arguments. They are suggested for two dimensions by von Neumann (1951) and
extended to n dimensions by Cook (1957).

The problem is to generate values of sin(Y), cos(Y) and tan(Y) when Y ~ U(0, 2r). There is no conceptual
problem with generating the intermediate random variate y = 2nu and calculating the trigonometric
function directly, but the following method is faster and eliminates the need for the subprogram call.

Let (vi, vz) be a point uniformly distributed over the unit circle; that is, f(v]. v2) = 1/n if
v]2+v2 <1 and f(v]. VZ) = 0 otherwise. Such points may be generated using the two dimensional accep-

tance rejection concept discusses immediately above. Let a denote the angle between ths posi}}ge 2 axis
and the vector defined by the origin and (v,. VZ)' Clearly, a ~ U(0, 2n). Llet r = (v] vy yie,

the distance of (vl,'vz) from the origin. Then cos(a) = v]/r. sin(a) = v2/r. and tan{a) = VZ/VI

can be used to generate the trigonometric functions. Improvements can still be made in the sin and cos
which involve the square root calculation of r. Note that (1) sin{(a) and cos(a) have the same distribu-
tion, (2) cos(a) and cos(2a) have the same distribution, and (3) cos(2a) = cos2(a) -~ sin¢(a), which

yields (v22-v]2)/(v]2+v22) as random values for either sin{a) or cos(a).

This idea is used to generate Cauchy random variates as x=v,/v, and by Knop (1973) for the dipole
distribution. The polar method for generating normal randoﬁ vlriates, as given in Marsaglia and Bray
(1964) is also based on ithese concepts.

von Neumann's comparison method

von Neumann (1951) gave a method for generating exponential random variates which involves only comparing
uniform random numbers and no exponential level calculations. Forsythe (1972) extended the ideas, based
on a comment at the end of von Neumann's paper, to the normal distribution and any others satisfying the
differential equation f'(x) + b(x)f(x) = 0 for 0 < x < «. The concept has been used by Ahrens and
Dieter {1973), Dieter and Ahrens (1973), and Brent (1974) and extended further by Monahan (1979).

3. CRITERIA FOR ALGORITHM COMPARISON

Before we discuss algorithms for specific distributions, we 1ist here some criteria which are useful both
when developing algorithms and when selecting an algorithm for a particular situation.
1. Accuracy
1.8 Theoretical
1.b Error induced by U(0, 1) numbers not being random
1.c Error induced by computer arithmetic -- Monahan (1977)
2. Execution speed
2,a Set-up time -- Apostolopoulos and Schuff (1979)
2.b Marginal execution time -- Greenwood {1976)
3. Ease of implementation
3.2 Number of lines of code
3.b Support routines required
3.¢ Bit manipulation required .
4. Portability -- Greenwood (1977)
§. Memory requirements .
6. Interaction with variance reduction techniques -- Franta (1975)

This 1ist is fn no particular order of importance. In fact, an important point is that the criteria to

be used differ from application to application, making it impossible to order criteria in order of
importance. This makes it impossible to select a “best" algorithm except in the very uncommcn case where
an algorithm is better than ail others in terms of every criterion. On the other hand, many published
algorithms are dominated by other algorithms in that there is no situation where the algorithm is the best
choice. However. even then, a poor algorithmmaybe the best selection because it is already implemented.
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"are the most common topics, in that order.

4. STATE OF THE ART

Having discussed the fundamenta) concepts for generating random variates in Section 2 and criterfia for
evaluating algorithms in Section 3, we now discuss the state of the art in each of several specific
areas: continuous univariate distributions, discrete univariate distributifons, continuous multivariate
distributions, discrete multivariate distributions, point processes, time series, order statistics, and
geometric problems.

4.1 Continuous Univariate Distributions
Without a doubt, cont{nuods univariate distributions have received more attention in the literature than

any of the other topics considered here. About half of the references of this paper fall in this
category. Within the family of univariate continuous models, the normal, gamma, and beta distributions

The normal distribution

The first exact method for generating normal variates exactly, givep by Box and Miiller (1958), yields
pairs of independent standard normal variates using r = (-Zln(u])) y Q= Znuz, X =r sin{a), and

x2 = r cos{a). The validity of the algorithm can be shown directly via change of variables. A more
intuitive explanation is to note that ?r. a) are the polar coordinates of (x., xz). If X, and X, ae
independent standardized normal random variables, the bivariate densfty funcl lric ab3ut the
:Eigin,zimplying that u is a U(0, 2r) variate, and implying that the squared distance from the orig'n

=X +x22 has a chi-square distribution with two degreesof freedom. Noting that this chi-square
distrilution is the exponential distribution with mean 2 yields the algorithm from the point of view of
necessary conditions for X and Xy to be independent standardized normal variates.

jon"is symme

Marsaglia and Bray (1964) mention an improvement to the Box-Miller algorithm which was developed in

Mafsag ia (1962) and based on the tsigonometric results descussed in Section 2.4. Noting alsc that

v é4v,€ ~ (0, 1) conditional on v'1 +v;2 < 1 yields the algorithm (1) generate (vy,_vp) uniformly
it rad

dlstributed over the circle with u jus centered on the origin, (2) set s = vj24v,2, (3) set
c = (-2 Wn(s)/s)%, (4) set xy = c v; and (5) set x, = c v,.

s e b k.

While these two early algorithms are based on special properties of the normal distribution, later

algorithms have been primarily composition and acceptance/rejection based. At the assembler language

level, where bit manipulation is easy, the composition based algorithm of Marsaglia, MacLaren and Bray

(1964) is very fast. tot as fast, but requiring no bit manipulation, is the composition algorithm of :
Kinderman and Ramage (1976). The are many algorithms which are easy to implement, but not as fast. !

Marsaglia (1961c, 1964), Kinderman and Monahan (1976) and Schmeiser (1980) present algorithms for random
variates from the tails of the distribution., Tail variates may also be obtained using the inverse trans-
formation, which is considered in Abramowitz and Stegun (1964), Beasley and Springer ?1977), Burr (1967),
Hi11 and Davis (1973), Miiller (1958), Odeh and Evans (1974), Page (1977), Ramberg and Schmeiser (1972),
Schmeiser (1980), and Wetherill (1965).

Other references on normal varjate generation include Ahrens and Dieter (1972, 1973), Bell (1968), Best
(1979), Brent (1974), Burford and Willis (1978), Butcher (1961), Chay, Fardo and Mazumdar (1975), Chen
(1971), Dieter and Ahrens (1973), Forsythe (1972), Gates (1978), Gebhardt (1964), George (1976), Kinderman

and Monahan (1977), Kinderman, Monahan and Ramage (1975), Kronmal {1964), Marsaglia (1961c), Marsagiia,

Ananthanarayanan and Paul (1976), Miklich and Austin (1976), Moritsas (1973), Miller (1959b), Payne
21977). Pike (1965), Pullin {1980), Sakasegawa (1978), Shafer (1962), Shepherd and Hynes (1976), Sibuya
1962), Swick (1974), Tadikamalla (1978¢c), Tadikamalla and Johnson (1977), and C.S. Wallace (1976).

The state of the art of normal variate generatfon {s very good. No matter what criteria are applicable,
there are algorithms which are satisfactory. This fs not surprising since the normal distribution has
only one shape, thereby allowing variates to be generated with no overhead for setting-up constants.

The simple transformation of multiplying by the standard deviation and adding the mean yields all possible
normal distributions. Gamma and beta variate generation are more difficult because the shape of the
distribution changes as a function of the parameters. N

The gamma distribution . a=1 =X
The ganma distribution with shape parameter >0 has density function f{x)=x"""e™"/I(a) I(x)(q ).

Multiplying by the scale parameter 23>0 yields a mean of a8 and variance uaz. Several other distribu-

tions are special cases: The exponential with mean 8 when a=1, the Erlang when a s integer, the chi-
square with n degrees of freedom when a=n/2 and g=2, and the normal in the limit as a » =. We discuss
the exponential, Erlang and chi-square distributions bofore we consider the general gamme distribution.

The classic method of generating exponential variates s the inverse transformatfon x = - 3 1n(1-u).
Other methods include the rectangle, wedge, tail algorithm of Maclaren, Marsaglia and Bray (1964), the
comparison method of von Neumann (1951) discussed in Section 2.4, modifications to the comparison method
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by Ahrens and Dieter (1972), Marsaglia (1961a) with a modification by Sibuya (1962), and polynomial sam-
pling in Ahrens and Dieter (1972). The Monte Carlo results in Ahrens and Dieter (1972) show their algo-
rithe SA to be the fastest available in assembler language and the inverse transformation to be the
fastest in FORTRAN., This author, in unpublished Monte Carlo results, found 2 sltightly faster FORTRAN
leve! algorithm on a CDC CYBER 72 in 1978 to be (1) set y = - ln(u1u ), (2) set xy = u,y and (3) set

X, =y - K. Here u, partitions the Erlang (with mean Z{ varfate y gnto two 1nde$ende t exponential
vgriates. In terms gf computational comparison to the fnvers2 transformation, it trades a v{0, 1)
generation for a logarithm computation. Mith the additional overhead of the pointers necessary to keep
track of the two exponential variates, this new algorithm is about 10% faster ihan the inverse transfor-
mation. A more general algorithm studied was to partition an Erlang (with mean k) variate y by k-1

U(0, 1) order statistics to obtain k independent exponential variates with mean 1, but k=2 praved to
be the fastest and easiest to implement.

Erlang variates with mean k have classically been generated us;ing the special property that the sum of
k exponential varjates have the desired distribution. Using the inverse transformation and some algebra

.ylelds x = - ln(niau.). This is an excellent algorithm for small values of k, but execution time grows

linearly with k, klng the use of the more general gamma algyrithms discussed below faster for large k.
The classical method of generating chi-square random variates with n degrees of freedom has been x = y+zz
where y is an Erlang variate with k the largest integer less than or equal to n/2 and 2z is standard
normal if n is odd and is zero if n is even. The special cas2 of n=2 {s the exponential distrifbution
with mean 2. For large values of n, the general algorithms for the gamma distribution are faster.

The earliest exact method for generating a gamma variate for any a > 0 is due to Johnk (1964), which is
written in German. Fishman (1973) discusses the algorithm, waich 1s x = y + wz, where y is an Erlang k
varfiate, w is an exponential vartate with mean 1, and z is a seta variate with parameters vy and 1-y,
where k is the integer portion of a,and y is the fractional portion. Again the dependence on Erlang
va;iates makes this algorithm inefficient for large values of a, making the general algorithms discussed
below faster. .

As late as the mid 1970’s, approximate algorithms where being published, since exact methods were
unacceptably slow for large values of a. These include Phillips (197:), Phillips and Beightler (1972),
Ramberg and Schmeiser {1974), Ramberg and Tadikamaila (1974), and lheeler (1974, 1975). See also Bowman
and Beauchamp (1575). A1l are approximations to the inverse cdf and should not be considered in 1ight
of the current state of the art. Approximations yielding machine accuracy inverse transformations may
be found in Best and Roberts (1975) and Bhattacharjee (1970). Since the evaluation of the inverse
transformation is usually performed by iteratively cvaluating the cdf, Gautschi (1979) is of interest.
See also Narula and Li (1977). .

Exact algorithms which execute in time relatively insensitive to a are now plentiful. Schmeiser and Lal
(1980) give algorithm GAPE which has the smallest execution time per variate for large values of a,

but its set-up time makes it not fastest when only one variate is needed. Best (1978b) gives a simple
algorithm with almost no set-up time. There are many algorithms which provide a continuum in tradeoff
between set-up time and marginal execution time between these two algorithms. When a very fast normal
generator is available, Marsaglia's (1977) algorithm RGAMA is very fast. Most, but not all, receant algo-
rithms are valid for a > 1, since Johnk's (1964) algorithm is quite acceptable for a < 1.

Other references include Ahrens and Dieter (1974), Atkinson (1977), Atkinson and Pearce (1976), Cheng
(1977), Cheng and Feast (1979), Dagpunar (1978), Dieter and Ahrens {1974), Fishman (1976), Franklin and
Sen (1975), Greenwood (1974}, Kinderman and Monahan (1978), MchGrath and Irving (1973), Popescu (1974),
Tadikamalla (1978a, 1978b), C.S. Wallace (1976), N.D. tallace (1974), uhittaker (1974), Berman (1971),
and Locks (1976). Takahashi (1959), in Japanese, may also be of interest.

The beta distribution

The beta distribution with shape parameters p > 0 and q > 0 has density function

i) = P 10-0%Y 8(p, @) Hx)(g, 1)

where 8{p, q) is the beta function. The mean is p/{p+q) and the variance is pq/((p+q)z(p+q+1)).

Special cases include the uniform distribution when p = g = 1, the arcsin distribution when p = q = )5,

the gamma distribution in the limit as p + =, q + =, and p/q remains constant; and the normal distribution
in the 1imit as p » =, q+ =, and p = q. When p and q are both less than 1, the density function is U
shaped, with the density function infinfte at x = 0 and x = 1. llhen exactly one of p and q are less than
1, the distribution is J shaped, and when both p and q are greater than 1, the distribution {s unimodal.
This diversity of shapes makes the beta distrfbution an important model of real world phenomena (often
after rescaling to the interval (a, b)), but this same diversity makes developmentof beta variate genera-
tion algortimms difficult, Most algorithms consider only one shape of the beta distribution, requiring
the use of a combination of algorithms to obtain variates efficiently for all parameter values.

As with gamma generation, early algorithms dealt with special cases. Fox (1963) suggested the use of
B(0, 1) order statistics when p and q are integer. A classical general technique is x = w/{w+y) where
w~ gamma {a=p) and y ~ gamma (a=q), which results in a reasonable algorithm when good gamma generators




are used. Jbhnk (1964) gave an algorithm valid for any parameter values, tut which has execution times
which grow rapidly with p and/or g. .

Interest in beta variate ?eneration was spurred by Ahrens and Dieter (1974a) who used a normal majorizing

function with mean p/{p+q) truncated at zero and one to obtain algorithm BN. Execution time {s least
when p and q are close to the limiting normal case of large and equal values. Execution time in the

limiting case as the beta approaches the gamma (p and q large and unequal) is asymptotically infinite
since the heavier tails of the gamma distribution force a pocr fit by the normal majorizing function.

The first algorithm which executes in finite time for all pa:ameter values p > 1 and q > ) is BB, which
is developed in Cheng (1978). Algorithm BAPE developed in Schmeiser (1980) has marginal times about half
of those of BB, but the set-up time is longer and BAPE requires more lines of code.

Atkinson and Whittaker (1976, 1979) consider J shaped beta distributions having one parameter less than
and one parameter greater than 1.

Other references are Arnason (1972), Atkinson (1979c), Bankovi (1964}, Békéssey (1964), Best (1978a),
Dieter and Anrens (1974), Lock: (1976), and Schmeiser and Shalaby (1980). Hajumder and Bhattacharjee
{1973) consider the inverse transformation.

Other continuous distributions
Other continuous univariate distributions have received considerably less attention. Often only a single
paper has been written for a particular distribution. We sinply list the relevant references here.

Inverse Gaussian (Wald) distribution: Michael, Schucany and Haas (1976).

von Mises distribution: Best and Fisher (1979),

Ansari-Bradley W statistic: Dinneen and Blakesley (1976).

Weibull distribution: Léger (1973).

Exponential power distribution; Johnson (1979) and Tadikamalla {1980).

Stable distribution: Bartels (1978) and Chambers, Mallows and Stuck (1976).

Lognormal distribution: Chamayou (1976).

Student's t distribution: Kinderman and Monahan (1978), Kinderman, Monahan and Ramage (1975, 1977) and
Pearson family: Cooper, Davis and Dono (1965) and McGrath and Irving (1973). Best (1978a).
Dipole distribution (a generalization of the Cauchy): Knop (1973).

Cauchy distribution: Arnason (1974), Monahan (1979), and Robinscn and Lewis (1975).

Kolmogorov-Smirnov statistic: Devroye (1980c).

Burr and Pareto distributions: Popescu (1977).

Extreme value distribution: Goldstein (1963).

Generalized (four parameter) gamma distribution: Tadikamalla (1979a).

Weibull, normal, gamma and beta tails: Schmeiser (1980)

Devroye (1980a) considers variate generation when only the characteristic function is known.

Ramberg (1975), Ramberg and Scrmeiser (1972, 1974), Burr (1942, 1973), N.L. Johnson {1947), Ramberg,
Tadikamalla, Dudewicz and Mykytka (1979), Johnson, Tietjen and Beckman (1980), Schmeiser (1977), and
Schmeiser and Deutsch (1977) discuss various general families of distributions for which variate
generation is straightforward.

4.2 VUnivariate Discrete Distributions

The Poisson and binomfal distributions have received the most attention of all the univariate discrete
distributions. Johnson (1974) developes a unifying theory for discrete variate generation.

The Poisson distribution o x
The Poisson distribution has mass function f{x) = e y*/x! for x = 0, 1, 2, ... , where u is the mean
and the variance of X. :

There are three approaches appropriate when u is small. The inverse transformation, ‘mplemented using
the recursion f(x) = f(x-1) 1/x almost always dominates the equally easy to implement algorithm based

on simulating a homogeneous Poisson process with rate 1 for u time units, which is discussed tn Kahn
(1956) and Schaffer ?1970). Both methods require a set-up involving exp(-u). When the mean changes
often, a "thinning" algorithm which requires no set-up is faster. To generate variates for changing mean
in the range (0, y), generate a Poisson variate with mean y and reject each event with probability
1-(u/y), which is equivalent to using the product of a Poisson variate y with mean vy and a binomial
variate with parameters n=y and p=vy/u. Thinning algorithms are further discussed in the section on point
processes.

Generating Poisson variates when 1 is larqge has posed a more substantial problem over the years. Ahrens
and Dieter (197%a) give a composition aigorithm with executfon time increasing with /u and a method based
on gamma variates with time increasing in In{u). Fishman (1976b) surveys the Poisson variate 1iterature
and gives algorithm PIF which sets-up quickly and has low marginal execution times for moderate values of
u, although execution time increases with vy, .
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Akinson (1979a) gives the first algorithm which 1s exact and has execution time which does not go to
infinity as u > @, Algorithm PA is based on acceptance/rejection, used a logistic majorizing functfon,
and evaluates In{x!) by tabling values for x through 200. Using Stirling's approximation for 1n(x!)
with enough terms to provide machine accuracy, rather than the tabled values.allows PA to be used for
any large value of u.

Devroye (1980e) gives algorithm IP which is based on composition. The inverse transformation is used
for the left tail. The body of the distribution is handled via acceptance/rejection and a normal
majorizing function. The right tail is handled with an exponertial majorizing function, Evaluation of
x! is performed explicitly via x(x-1){(x-2)---(2), but is seldon necessary due to the use of preliminary
acceptance and rejection comparisons. Execution times are very stable as p + =,

Schmeiser and Xachivichyanukul (1980) give algorithm P2PE using composition, Each of three subdensities
are handled via acceptance/rejection. The tails have exponential majorizing functions and the body of

the distribution has a uniform majorizing function, Using the <inderman and Ramage (1976) normal
generator with IP, P2PE requires about half the marginal execution time and PA is about half again slower.
For one variate, [P and P2PE require about the same time, due to P2PE taking lTonger to set-up. For more
than one variate, P2PE is preferred. However, if a very fast assembler language normal generator {is used,
1P will perform better than with the FORTRAN level normal generator,

Other Poisson references include Atkinson (1979b), Bolshev (1965), Hufnagel and Kerr (1969), Molenaar
(1970), Pak (1975), Snow (1968), and Tadikamalla (1979b).

The binomial distribution "X n-x
The binomial distribution has mass function f(x) = (.} p~ (1-p) for x =0, 1, ..., n. The mean is np
and the variance is np(l1-p).

When np is small, the inverse transformation with recursion f(x) = f(x-1) (n-x+1) {p/(1-p)) / x is good.
When n is small, summing n Bernoulli trials each having probability of success p works well.

For woderate values of n, the use of Chen and Asau's (1974) index table for searching the inverse cdf

is fast, but as n goes to infinity, either the size of the table or the execution time becomes infinite,
as does the set-up time. Similarly for Walker's (1977) alias method. Norman and Cannon's (1972) tabl{ing
procedure works well if rounding the probabilities is acceptable.

Relles {1972) and Ahrens and Dieter (1974a) give algorithms whose execution times increase only slowly
with the mean, based on the binomial distribution's relationship with the beta distribution.

There are two exact algorithms which have finite execution time as n and np go to infinity. Fishman
(1979) suggests using an acceptance/rejection algorithm with a Poisson majorizing function. Using any

of the three Poisson algorithms requiring finite time yields a finite time binomial generator. The other
algorithm is Devroye and Naderisamani {1980).

The negative binomial distribution ntx-1y x

The negative binomial distribution has mass function f(x) = (" 4 ') p (1-p)” for x =0, 1, ... . The
mean is n{1-p)/p and the variance is n{1-p)/p¢. 1t is also called the Pascal distribution when n is
integer, in which case it can be viewed as the sum of n geometric random variables with probability of
success p and x is the number of failures before n successes. The geometric distribution is the special
case of n=1,

Geometric random variables may be generated directly using the inverse transformation x = [{1n{1-u)/
n{1-p)|, where [y] denotes the largest integer Vess than or equal to y. Of course summing n geometric
variates results in execution times which increase linearly with n.

As suggested by Devroye and Naderisamani (1980), a negative binomial variate for any n and p can be
generated in a reasonable amount of time by gencrating a gamma (u=n, 8=(1-p)/p) variate y and then
generating a Poisson variate x with mean y, which is an example of continuous composition for a discrete
random variable. Léger (1973) also discusses the negative binomial distribution.

4.3 MULTIVARIATE DISTRIBUTIONS . .

The generation of random vectors (X,, X,, ..., X ) having specified properties {s substanttally harder
than the generation of univariate rando variate]. The marginal distributions of the X,'s need to be
correct while at the same time some form of dependence between the variables must be eslablished.
Schmeiser and Lal (1980a) survey multivariate input models for simulation, including continuous and
discrete random vectors, point processes, time series, and order statistics.

Continuous multivariate distributions
A common problem is to need to have the marginal distributions and dependence structure specified by the
joint density function f(xy, x2, ..., x5). Composition, acceptance/rejection, and conditional distribu-
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tions are applicable, the first two being straightforward exteasions of the univariate concepts. The
use of conditional distributions reduces the multivariate problem to n univariate problems by ustng
the algorithm (1) generate xy from f1{x), (2) generate x; from fa(x,|x7), (3) generate xy from

73(x3|:]5]x2). and so on. While it is very general, the use of conditional distributions is often
ntractable.

Often in simulation input modeling, however, the data car Le used to estimate the conditional distribu-
tions directly, making generation via conditional distrf.u.ticns straightforward. See Kottas and Lau
(1978), Eilon and Fowkes (1973), and Johnson (1976).

The multivariate normal distribution has been the subject of more papers than any other multivariate
topic considered here: Barr and Slezak (1972), Bedall and Zinmerman (1976), Desk (1978, 1979, 1979¢),
Hurst and Knop (1972); Jansson (1964), Page (1974), Scheuer and Stoller (1962) and Schmeiser and Al
(1978). Franklin (1965) discusses the related topic of Gaussian processes.

Several authors have considered various multivaridte gamma distributions. Mitchell, Paulson and

" Beswick (1977) generate bivariate exponential random vectors with any positive correlation and some
negative correlations. (The paper says that any correlation betwcen -2.5 and 1 can be obtained, but
this is obviously a misprint.g Ronning (1977) and Prékopa and Szdntai (1978) present multivariate gamma
distributions and generation methods for nonnegative correfations. Schmeiser and Lal (1979) give a
family of algorithms for bivariate vectors having any gamma marginal distributions and any correlation
consistent with the marginal distributions, including negative correlations.

Macomber and Myers (1978) consider multivariate beta distributions. Arnason (1972) considers the
Dirichlet distribution, which has all beta marginal distributions.

Chalmers {1975) and Dempster, Schatzoff and Wermuth (1977) generate random correlation matrices.
Chambers (1970) and Smith and Hocking (1972) consider generation of Wishart matrices and Gleser {(1976)
generates noncentral Wishart distributions. 0dell and Feiveson (1966) generate sample covariance
matrices.

Coleman and Saipe (1978), Gargano and Tenenbein (1977}, Johnson and Ramberg (1977b), and Johnson and
Tenenbein (1979? discuss bivariate distributions havin U(?, 1) marginal distributigns. Multivariate
uniform distributions are important primarily because ?F “Huy)y F" N u,), ..oy Fpo'{u)) has exactly
the specified marginal distributions and by modifying thl corlel?tgon structure of the uniform random
vector, various correlation structures can be obtained in the multivariate distribution of interest.
The major problem with this approach is that the correlation between x. and xj must be determined via
numerical integration. i

Although not in the context of random variate generation, Kimeldorf and Sampson (1975a, 1975b) provide
the basis for a wide range of multivariate uniform distributions. Theyadvocate the study of multivariate
distributions via the distribution of (F,(X,), F (XZ), vees F (X )). Since each F.(X.) has a U{(0, 1)
distribution, anpalysis of the Lorre1atiol slruct reis easier"afler this transformitidn, This suggests
an algorithm of the following type: (1) generate (z,, z,, ...z ) from any n-dimensional multivariate
distribution (the multivariate normal being the obvidus ghoice)? and (2) calculate Xg = Fi“‘(w(zi))

fori=1,2, ..., n, where #(-) denotes the cdf of the normal distribution. Still the problem remains
that the correlation between Xy and xJ must be determined via numerical integration.

Hull {1977) uses this method (although there is no indication that he was influenced by Kimeldorf and
Sampson's work) to approximate the correlation by matching points on the regression curve E(X]lxz).
Johnson (1976) discusses direct transformation from one multivariate distribution to another.

Mardia (1970) offers a good discussion of bivariate distributions. Moran {1967) and Uhitt (1976) con-
tain good discussions of the correlations which are theoretically possible for given marginal distribu-
tions. Other references include Arnold (1967), Friday (1976), Johnson (1949), Johnson and Ramberg
(1977a), McArdle (1976) and Pearson (1925).

Discrete multivariate distributions

LittTe work has appeared on discrete multivariate distributions. Fishman (1978a) and Ho, Gentle and
Kennedy (1979) discuss the multinomial distribution. Kemp (1976) and Kemp and Loukas (1978a, 1978b)
consider the generationof bivariate dicrete distributions in general. Boyett {1979) gives an algoritm
for generating R x C contingency tah'es. See also Hakimoto ?1976).

Point Processes

Generation cf point processes is most commonly encountered when providing arrivals of customers to a
system, The simpltist case is that of independent Poisson arrivals with constant rate u, which is most
c¢ommonly handled by generating exponential interarrival times with mean 1/u and adding the time to the
time of the last arrival. Complications arise when the interevent times are not exponantial or the rate
varies as a function of time or thc state of the system.

A Poisson point process with rate u{t) which varies with time is called a nonhomogeneous Poisson point

process (NHPP). A NHPP can be generated using the inverse transformation, composition, acceptance/rejec-
tfon, and special properties. .
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Ginlar (1975) gives the inverse transformation, which he terms the time scale transformation. Let

t
i
. A(ti_‘o ti) b It'_] u(t) dt,

which i{s the expected number of Poisson arrivals between times t1 1 and t. The cdf of the time of the
next arrival Ti.conditionAI on the time of the last arrival t‘_I.' is

FTiltiol (t5) =01 - exp(-Alt;_;, t;)).
Since T, is a continuous random variable, FTilt‘_] ~ 0(0,1). Setting FTilti_](tilti-l) = y and

solving for t, yields the inverse transformation algorithm, which for many simple NHPP's 1s closed
form. For exlmple. i¥ u(t) = 2ct, the inverse transformation algorithm {s ty = (t‘ ‘-ln(l-u)/c)5.
Kaminsky and Rumpf (1977) also discuss the inverse transformation. -

The special property is that Poisson processes, like Poisson random variables, can be added. Consider
n NHPP's having rate functions u (t), for i = 1, 2, ..., n. “hen merging the events from the n indepen-
dent processes yields a NHPP wi h rate function u(t) = % ui(t).

The acceptance/rejection concept in the context of NHPP's is commonly termed "thinning." Here events
from one NHPP are accepted or rejected to obtain events from another NHPP. Let u'(t) > u(t), where
u'(t) is chosen so that the inequality is close and events from the NHPP having rate function p'{t) are
easy and fast to generate. The thinning concept is to generate events with rate u'(t) and to accept
each event with probability u(t)/u'(t), where t is the time ot the event. See Lewis and Shedler {1979b).

Lewis and Shedler (1976) discuss generating events when u(t) = exp (uo + u]t) and lLewis and Shedler
{1979a) consider u(t) = exp (uo +ut 4 uztz) for NHPP's.

Jacobs and Lewis (1977) and Laurance and Lewis (1977) discuss point processes having correlated expon-
ential interevent times, Fishman and Kao (1977) discuss parameter estimation and generation of inter-
event times using a harmonic function to model the expected interevent time conditional on t to
obtain nonhomogeneity. They also consider nonexponential interevent times. Kimbler, Davis ;ﬁb Schmidt
(1980) consider estimating and generating point processes when the data is in the form of counts and are
nonPaisson.

Time series

Time series having normal marginal distributions were studied by Frantlin (1965). Coleman and Saipe
(1977) note a correct method for generating time series having lognormal marginal distributions. Gaver,
Lavenberg and Price (1973), Lawrance and tewis (1977, 1978), Jacobs and Lewis (1977) and Schmeiser and
Lal (1979) consider time series having gamma marginal distributions. Price (1976) and Hoffman (1979)
generate binary time series. Fraker and Rippy (1974), Kaplan and Orr (1976), Nawathe and Rao (1979),
Polge, Holliday and Bhagavan (1€73) and Yagil (1963) consider various related problems, as do Li and
Hammond (1975) who provide some additional references.

Order statistics
We briefly review some results for generating order statistics. Schmefser (1978a) gives a complete
survey.

Let X(1) denote the i th largest observation from a sample of n {not necessarily independent) observa-
tions. ‘Then x(‘) is the i th order statistic. The minimum observation is x(1), the maximum is x(n) and

the median is x (n+] )when n is odd. The need for random order statistics arises in many contexts;
reliability is 5 Eom&éﬁ example. Clearly the direct method of generating Xys Xgu wees Xp and sorting

§s always valid. However, when n is large or not all order statistics are needed, considerable savings
are possible using the methods discussed here.

First consider the case of independent U(0, 1) random variables Ups Ups «evy UL Schucany (1972) showed

that the following algorithm is valid for generating the order statistics directly without sorting:
(1) Generate Vis Vgu eees Yy independent U(0, 1), )

(2) Set u; .\ = v,1/n
(n) 1 1
(3) Set Ulnei) = Y(n-141) Visl for 1 =1, 2, ..., n=1.

The algorithm can be terminated after k iterations to obtain only the top k order statistics. Execution
time is linear in k, whereas sorting algorithm times increase faster than linearly. The intuftive
thought behind Schucany's algorithm is that conditional on knowing "(n-1+1)' the distribution of the

remaining n-1 order statistics is that of n-i independent U(Q, Utq i+l)) random variables, thus permitting

the recursion. Lurie and Hartley (1972) published a similar - algorithm, the difference being

that they gencrate the order statistics in the reverse order:
(1) Generate Vis Vos wees Vg independent U(0, 1),

/{n-1)
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(2) Set U(]) =1 . V]l/n

(3) setugyy =1 - (1 -y ) v1ll(n-m)

for 1t =2, 3, ..., N.

Lurie and Mason (1973), Mason and Lurie (1973) and Rabinowitz and Berenson (1974) consider these ideas
further. Ramberg and Tadikamalla (1978) suggest using u(la ~ peta (4, n-i+1) to allow the recursion {n

either algorithm to begin anywhere, rather than only the'tdp or bottom. (Note the relationship to Fox
{1963) who used the same relationship to generate beta variates.)

These a1g?r1thms for U(0, 1) order statistics are more general than they first appear, since
X(4) * Fx (“(i)) is a valid method for obtaining random variatas for the i th order statistic for any

random variable X. The validity follows from Fi] being a monotonic function.

Devroye (l9?9d) considers the case of U(n) when n is so large that numerfical problems make the use
of U= ¥ " impossible. Schmeiser (1978) considers the generation of X(1) O X(n) when the

observations are not indentically distributed, but Fil is available.
i

In other cases, some kind of sorting is required. The use of a histogram provides an approximate sort
in time proportional to the number of observations. Good sorting algorithms require execution time
proportional to n In(n), although for small samples n sorts are reasonable. !lhen only some of the .
order statistics are required, the partial sorts of Chambers (1971, 1977) and Floyd and Rivest (1975)
are useful.

er 2" C‘
A final point is that when order statistics are being generated, the use of exact algorithms for
generating x, is important. An insignificant error in the tail of the distribution under regular sam-
pling]can be magnified into a serious problem with order statistics, since extreme observations become
more likely.

Geometric problems .
Many random generation problems have geometric interpretations, the most common being points uniformly
distributed on a sphere and random permutations (card shuffling).

Miller first considered the generation of a point uniformly distributed on an n-dimensiosa] sphese.
Let z,, z,, ..., z, be independent standardized normal random variates. Then if x, = z, /(2{ z, )

for i =1,2, ..., n; (x], X3, ... X,) 15 @ point uniformly distributed on the n-dimensional sphere
with radius one centered on %he origin., Execution time grows linearly with n.

Acceptance/rejection from an n-dimensional unit cube Tooks appealling at first, but the ratio of the
:olume of the sphere to the cube goes to 2ero quickly as n + =, See, for example, Schmeiser and Al{
1978).

Other references include Cook (1959), Dedk (1979b), Hicks and Wheeling (1959), Marsaglia (1972), Sibuya
(1964), and Yoshihiro (1977).

Algorithms for generating random permutations may be found in Boyett (1979), Eisen (1964), Page (1967),
and Rao (1961),

Crain (1978) considers generation of random polygons and Hsuan (1979) generates uniform polygonal random
pairs. Knop (1970) and Schrack (1972) discuss generation of random vectors distributed over a solid
angle. Heiberger (1978) considers random orthogonal matrices.

5. SUMMARY

The state of the art of random variate generation has changed greatly in the last ten years. Fast, exact
and easy to impiement algorithms are available for most common univariate distributions. Order statistics
and nonhomogeneous Poisson point processes are much more tractable than they were a fes years ago. Multi-
variate gamma vectors with any corrélation structure can now be generated, although as with many multi-
varfate generation problems numerical integration is involved. Several families of distributions which
are much more general than the commonly used distributions have been developed.
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